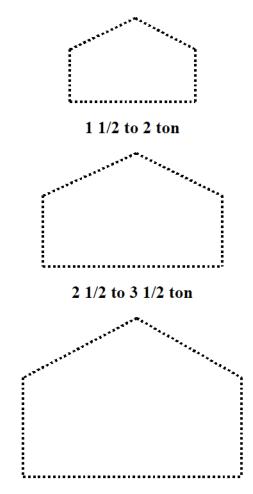
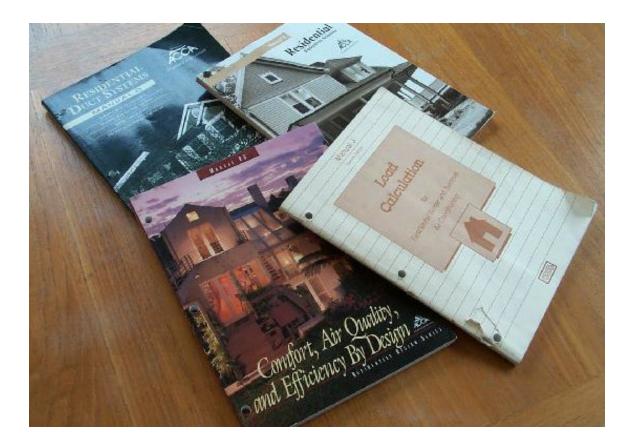
MANUAL J – HEATING AND COOLING LOAD



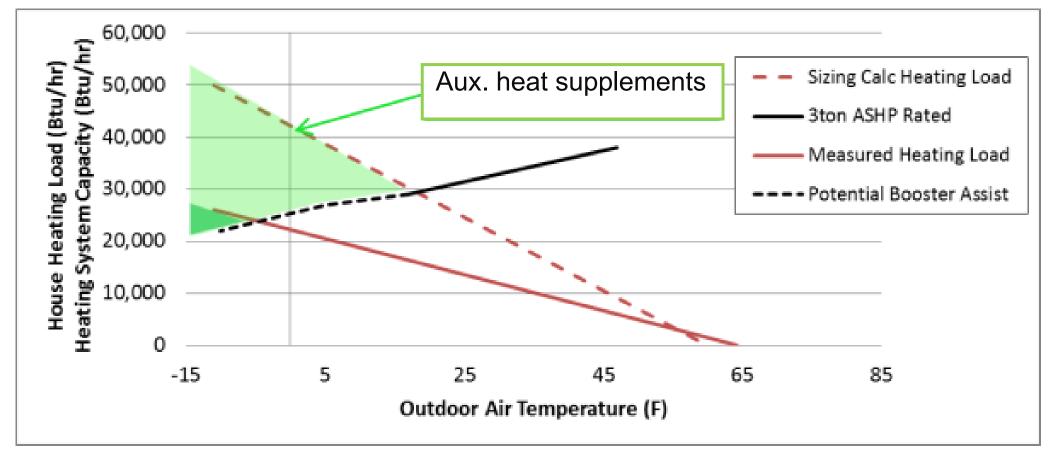
Air Conditioner or Heat Pump Sizing Chart

Sizing – Bad Rules of Thumb

(Please understand that this is meant as humor, however it is just as accurate as "x" number of square feet per ton!)


- One ton per 400 square feet
- One cfm per sq. ft. of house
- Tonnage = half the number of cylinders in the customer's biggest car/truck
- What's in the shop today
- $\frac{1}{2}$ ton bigger than their neighbor
- Other

4 to 5 ton


The ACCA Work Process

- •Manual "J" calculates heat loss/heat gain
- •Manual "S" the selection process
- •Manual "D" the duct design process

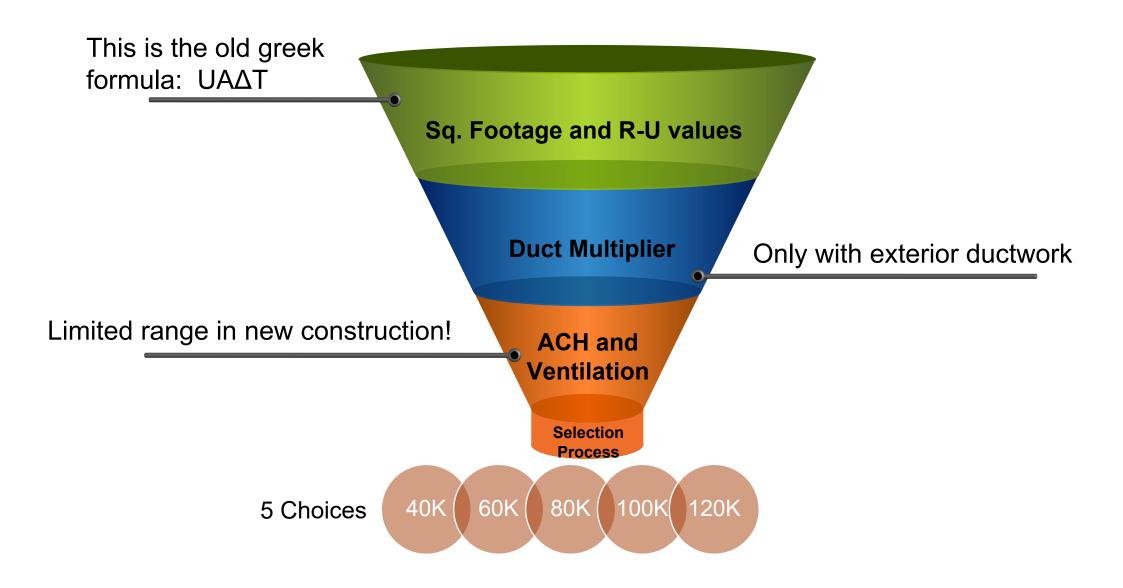
Shows Measured Load vs. Manual J

Illustrates that there is already a "fudge" factor in Manual J

Definitions: Design Conditions

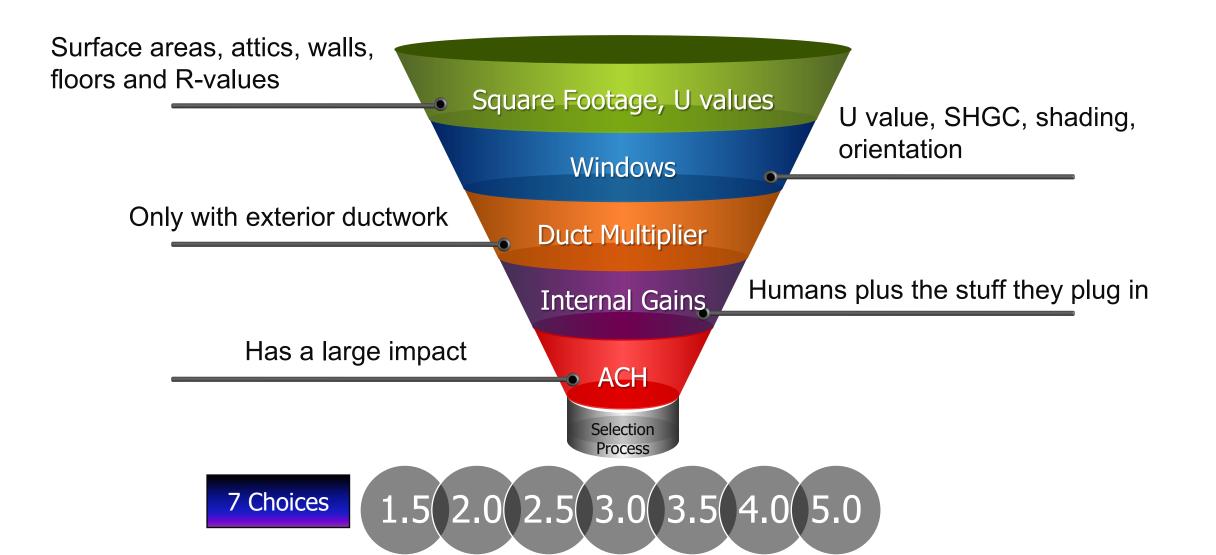
Design Temperature is not the coldest day or hottest day of the year

Winter Design Conditions: It only gets colder than this 1%-2.5% of the time

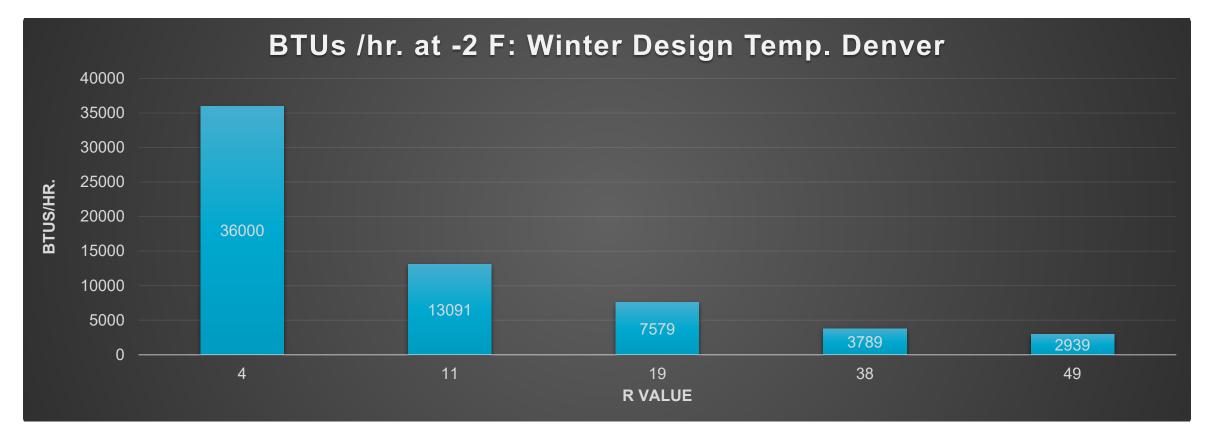

Denver:

Winter Design Condition is -3° F Summer Design 91°F with 59°F wet bulb

Note – use the correct weather station!

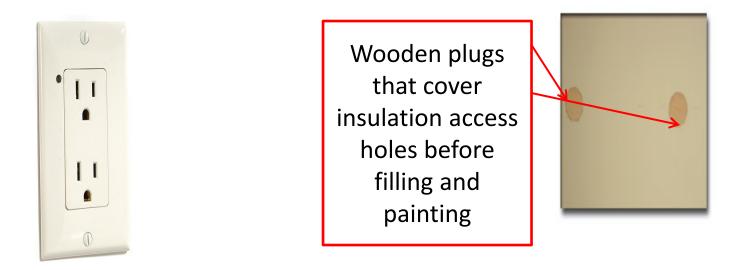


Manual J Heating Load Inputs (Gas Furnaces)


Manual J Cooling Load Inputs

Critical inputs include windows and internal gain

It's The Heat Loss Not The Square Footage


Heat loss through 2,000 sq. ft attic at various R-values

Denver Area Insulation History

Decade	Ceiling	Wall	Foundation	Windows
1950s	0-10	5-7	0	SP Alum
1960s	10-15	5-7	0	SP Alum
1970s	10-30	7-9	0	DP Alum
1980s	30	11	0	DP Alum
1990s	30-38	13	0	DP Vinyl
2000s	30-38	13	11	DP Vinyl w Low E
2010s	38+	13-15	11-13	DP Vinyl Low E

Checking For Wall Insulation

Removing the outlet cover and sliding a non-conductive probe such a plastic crochet hook or a chop stick between the sheetrock and the outlet base can help to determine if the walls are insulated

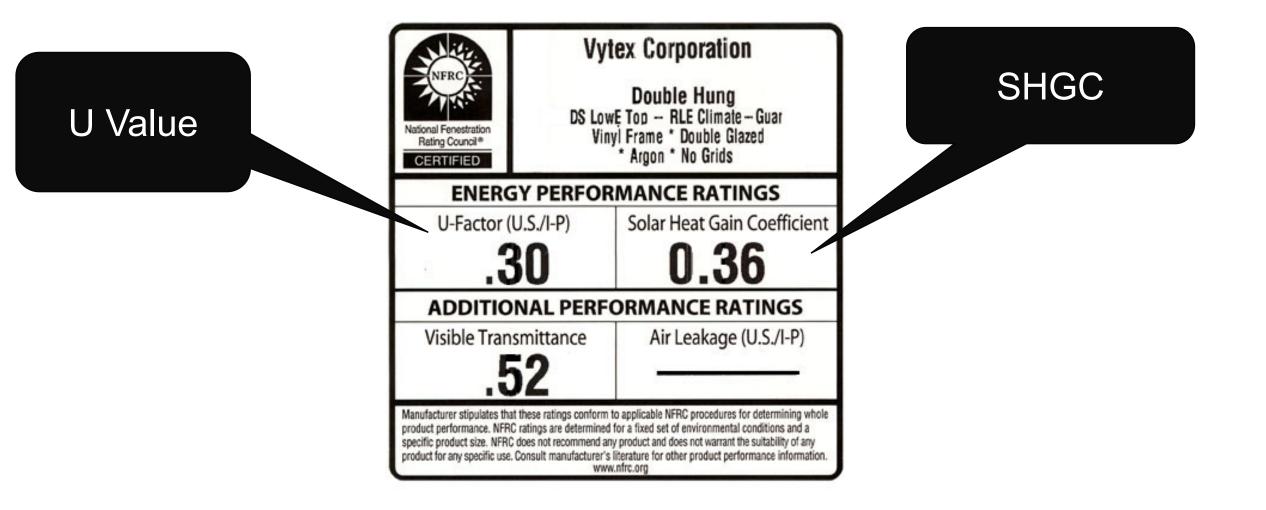
Walls that have been insulated post construction will have patched holes on the interior walls or exterior walls. Look for 2-1/2 inch holes that have been filled and painted over

Basements: The Critical Details

- First Question: Are you planning on conditioning the basement?
- How many feet below and above grade?
- Is it insulated?
- Does the sun actually "see" the glass?
- F-value vs R-value

Manufactured Home R Value Guide

Manufactured	Manufactured Home R Value Guide								
Timeframe	Ceiling	Floor	Wall	Windows					
Pre 1975	7	7	7	1.1					
76- 94 HUD Code	11	11	11	0.75					
90 -94 Super Good Cents	38	33	21	0.38					
Present HUD Code	22	22	11	0.48					
2000 to Present Energy Star	40	33	21	0.36					


Determining How Leaky or Tight a House is

Air Changes Per Hour (ACH) Rates: Always an Estimate

Year Built	Winter ACH	Summer ACH
Non 4 X 8 Sheet Goods	1	.5
4 X 8 Sheet Goods pre-1970	.70	.25
1970 to 1990	.5	.25
1990 to 2010	.35	.15
2010 to Present	.25	.15

NOTE – THESE ARE "NATURAL" ACH NO ACH50

What's On That Window Sticker

Windows: Sweat the Details

BTUS/HR/Sq.F1	r. of Window 3	Degree Latitude.			BTUS/HR. To	tal	
	U	Double Pane U value =.42	Double Pane U value=.42		J	Double Pane U value =.42	Double Pane U value=.42
Orientation	SHGC=.74	SHGC= .61	SHGC =.35	Window	SHGC=.74	SHGC= .61	SHGC =.35
North	49	26	19	40	1,960	1,040	760
NE or NW	80	53	32	40	3,200	2,120	1,280
East or West	104	72	42	80	8,320	5,760	3,360
SE or SW	93	63	37	40	3,720	2,520	1,480
South	65	40	25	40	2,600	1,600	1,000
Totals				240	19,800	13,040	7,880
				.5 ton diff	erence		
			ton difference		11,920	5,160	

Inside vs. Outside

NOTE: If any portion of the duct system is outside the conditioned space, be sure to have a duct multiplier

If ducts are outside the thermal envelope of the house, then a duct multiplier is added to the heating load.

Example:

Heat loss at design temp: 42,000 BTU/hr.Duct Multiplier10%Total heat loss46,200 BTU/hr

What Contributes to the Cooling Load?

- Conduction through walls and attics
- Solar gain and conduction through windows and skylights
- Floors exposed to outside temperatures
- People
- Ducts outside conditioned space (conduction and leakage)
- Infiltration/exfiltration
- Appliances
- Ventilation

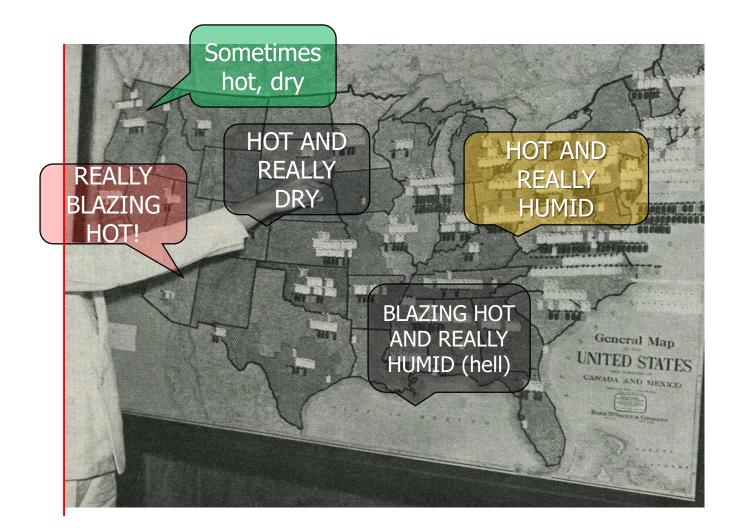
What Contributes to the Heating Load?

- Conduction through walls and attics
- ACH rate
- Floors exposed to outside temperatures
- Ventilation
- Ducts outside conditioned space (conduction and leakage)
- Infiltration/exfiltration
- Not fudging the inputs

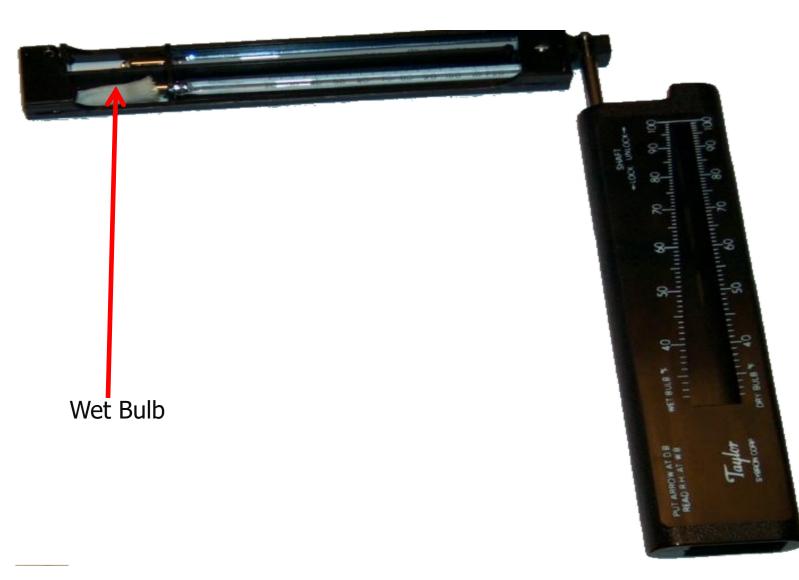
So, We Know the Loads, The Next Step is Selection

MANUAL S – EQUIPMENT SELECTION

What Is Meant by Equipment Sizing?



The goal of all HVAC equipment sizing is to find the best match between the house and the equipment.



Optimal size is the best match, or balance, between the rate of heat loss or heat gain of the house and the capacity of the HVAC equipment.

The Official Summer Climate Map of America

Sling Psychrometer

Total Cooling Load: Sensible Plus Latent

Sensible cooling load:

 The part of the cooling load that involves lowering the dry bulb temperature.

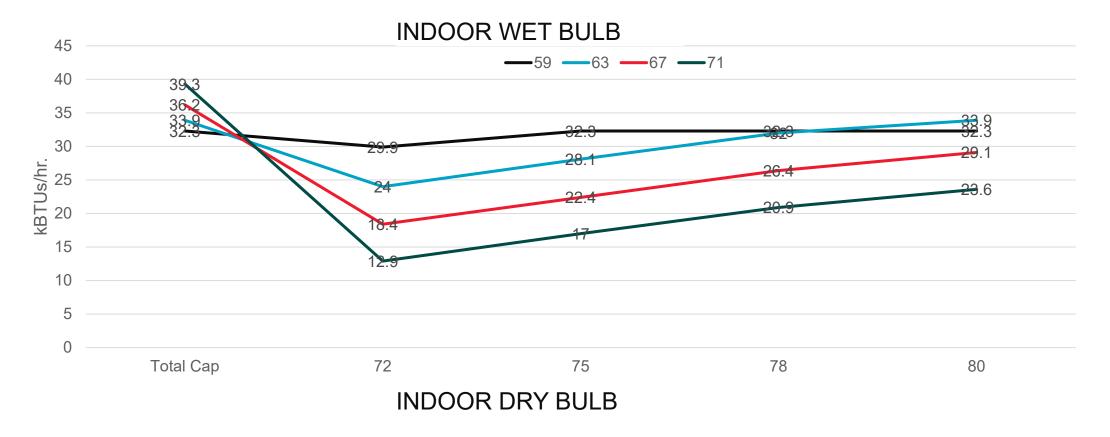
Latent cooling load:

 The part of the cooling load that involves removing water vapor from the air (dehumidification).

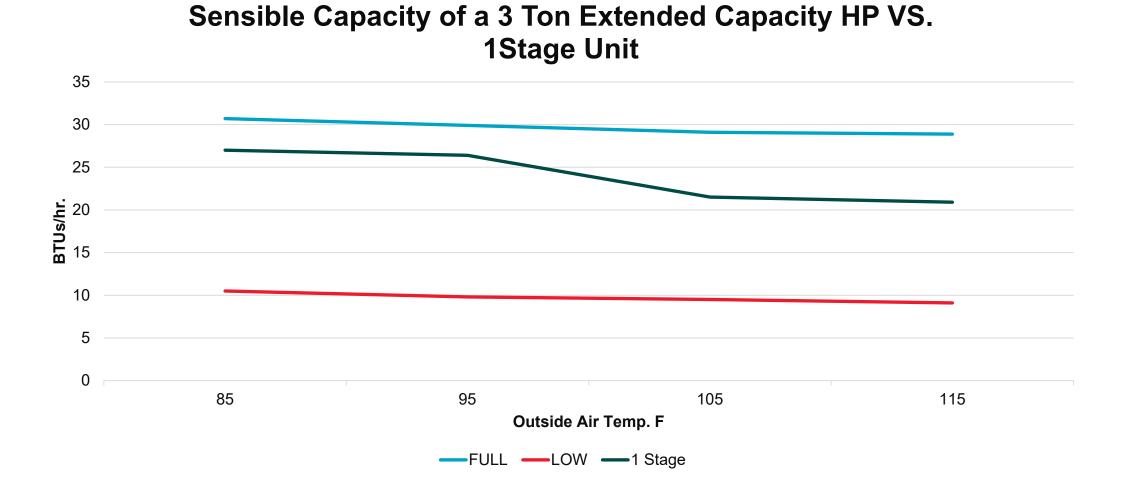
Cooling process will reduce both temperature and moisture

What Manual S Says About Cooling

Misnomer - Don't oversize by more than 115% or 125% if it's a heat pump.


Why:

- Because they are very concerned about dehumidification (but CO is not humid).
- With VSHPs dehumidification is not a worry, especially in CO. VSHPs modulate down to lower capacities.



Total and Sensible Capacity at 100%

3-ton Variable Speed Heat Pump

Sensible Capacity 3 ton Extended Capacity vs. 1 Stage

Sizing for Cooling

REMEMBER WE LIVE IN A DRY SUMMER CLIMATE!

- 1. Find the outside design temp.
- 2. Determine your cfm.
- 3. Pick the lowest entering we bulb (EWB) temp
- 4. Locate the sensible capacity

DETAILED COOLING CAPACITIES*

Evap	orator				CON	DENSER E	NTERING	AIR TEM	PERATUR	ES °F	anna ann an	encoren e	a na su dina
	Vir	Section 20	85			95			105			115	l yai nel i
CFM	E		acity tuh†	Total System									
UT III	B	Total	Sens‡	KW**									
				544B024 Ou	utdoor Se	ction With	517EN030	Indoor S	ection				
800	72 67 62 57	26.3 23.9 21.7 21.2	13.1 16.8 20.3 21.2	2.41 2.36 2.32 2.31	24.8 22.5 20.5 20.2	12.6 16.2 19.6 20.2	2.60 2.54 2.48 2.48	23.3 21.1 19.3 19.2	12.0 15.7 18.9 19.2	2.78 2.71 2.65 2.64	21.8 19.8 18.2 18.2	11.5 15.1 18.1 18.2	2.95 2.87 2.81 2.81
900	72 67 62 57	26.6 24.2 22.2 21.9	13.6 17.7 21.4 21.9	2.46 2.41 2.37 2.37	25.1 22.8 20.9 20.8	13.1 17.1 20.6 20.8	2.65 2.59 2.54 2.54	23.6 21.4 19.8 19.8	12.5 16.6 19.8 19.8	2.83 2.77 2.71 2.71	22.0 20.0 18.7 18.7	12.0 16.0 18.7 18.7	3.01 2.93 2.88 2.88
1000	72 67 62 57	26.9 24.5 22.5 22.5	14.1 18.5 22.3 22.5	2.51 2.46 2.43 2.42	25.3 23.0 21.4 21.4	13.5 17.9 21.4 21.4	2.70 2.64 2.60 2.60	23.8 21.6 20.2 20.2	13.0 17.3 20.2 20.2	2.88 2.82 2.77 2.77	22.2 20.1 19.1 19.1	12.4 16.8 19.1 19.1	3.07 2.99 2.95 2.95

Multipliers for Determining the Performance With Other Indoor Sections

Details Matter

REMEMBER WE LIVE IN A DRY SUMMER CLIMATE!

- 1. Find the outside design temp.
- 2. Determine your cfm.
- 3. Pick the lowest Entering Wet Bulb (EWB) temp
- 4. Locate the sensible capacity

0.D.	I.D.	TOT	SENS	SENS. CAP. AT ENTERING D.B. TEMP						
D.B.	W.B.	CAP.	72	75	78	80	KW			
	59	33.5	27.0	30.2	33.5	34.4*	2.75			
85	63	36.0	22.7	25.9	29.2	31.4	2.78			
	67	38.6	18.0	21.2	24.5	26.7	2.80			
	59	32.3	26.4	29.7	32.6*	33.3*	3.02			
95	63	34.6	22.1	25.4	28.6	30.8	3.06			
	67	37.1	17.4	20.7	23.9	26.1	3.09			
	63	33.1	21.5	24.8	28.0	30.2	3.40			
105	67	35.4	16.8	20.0	23.3	25.4	3.44			
	71	37.8	12.0	15.2	18.5	20.6	3.49			
	63	31.5	20.9	24.1	27.4	29.6	3.75			
115	67	33.7	16.1	19.4	22.7	24.8	3.80			
	71	36.0	11.3	14.6	17.8	20.0	3.85			
ORRE	CTION FAC	TORS - OTHE	R AIRFLOWS	MULTIPLY OF	R ADD AS INC	DICATED)				
IRFLO	N	1050	1350	AIRF	LOW	1050	1350			
TOTAL CAP					S. CAP	X0.94	X1.0			

Selecting the Unit

- Where does the 60% sensible 40% latent myth come from?
- 21,600/ 36000 = 60%
- This is one hot muggy house!
- This is not anyplace in the west.

Outdoor	Model Numbers	8	0°F [26.5°C] DB/67 95°F [35°C	°F [19.5°C] WB In] DB Outdoor Air	door Air	
Unit RANL-	Indoor Coil and/or Air Handler	Total Capacity BTU/H [kW]	Net Sensible BTU/H [kW]	Net Latent BTU/H [kW]	EER	SEER
Revised 9/12	2/2008		\frown			
(RCFL-A*3621B* (RGLR-07?BRQ?)	29,400 [8.6]	21,600 [6.3]	7,800 [2.3]	12.00	14.00
	RCFL-A*3621B* (RGPR-05?BMK?)	29,000 [8.5]	21,250 [6.2]	7,750 [2.3]	11.40	13.50
	RCFL-A*3621B* (RGPR-07?AMK?)	29,200 [8.6]	21,450 [6.3]	7,750 [2.3]	11.70	13.50
	RCFL-A*3621B* (RGPR-07?BRQ?)	29,400 [8.6]	21,550 [6.3]	7,850 [2.3]	12.05	14.00
	RCFL-H*3617A* (RGFD-07?MCK?)	29,200 [8.6]	21,450 [6.3]	7,750 [2.3]	11.40	13.50
	RCFL-H*3617A* (RGGD-06?MCK?)	29,200 [8.6]	21,450 [6.3]	7,750 [2.3]	11.45	13.50
	RCFL-H*3617A* (RGGD-07?MCK?)	29,000 [8.5]	21,300 [6.2]	7,700 [2.3]	11.35	13.50
	RCFL-H*3617A* (RGJD-06?MCK?)	29,200 [8.6]	21,450 [6.3]	7,750 [2.3]	11.45	13.50
	RCFL-H*3617A* (RGJD-07?MCK?)	29,000 [8.5]	21,300 [6.2]	7,700 [2.3]	11.35	13.50
	RCFL-H*3617A* (RGLR-07?AMK?)	29,200 [8.6]	21,450 [6.3]	7,750 [2.3]	11.65	13.50
	RCFL-H*3617A* (RGLR-07?BRQ?)	29,400 [8.6]	21,600 [6.3]	7,800 [2.3]	11.95	14.00
	RCFL-H*3617A* (RGPR-07?AMK?)	29,200 [8.6]	21,450 [6.3]	7,750 [2.3]	11.65	13.50
	RCFL-H*3621A*	28,800 [8.4]	21,150 [6.2]	7,650 [2.2]	10.95	13.00
	RCFL-H*3621A* (RGFD-07?MCK?)	29,200 [8.6]	21,450 [6.3]	7,750 [2.3]	11.45	13.50
	I I		I I			

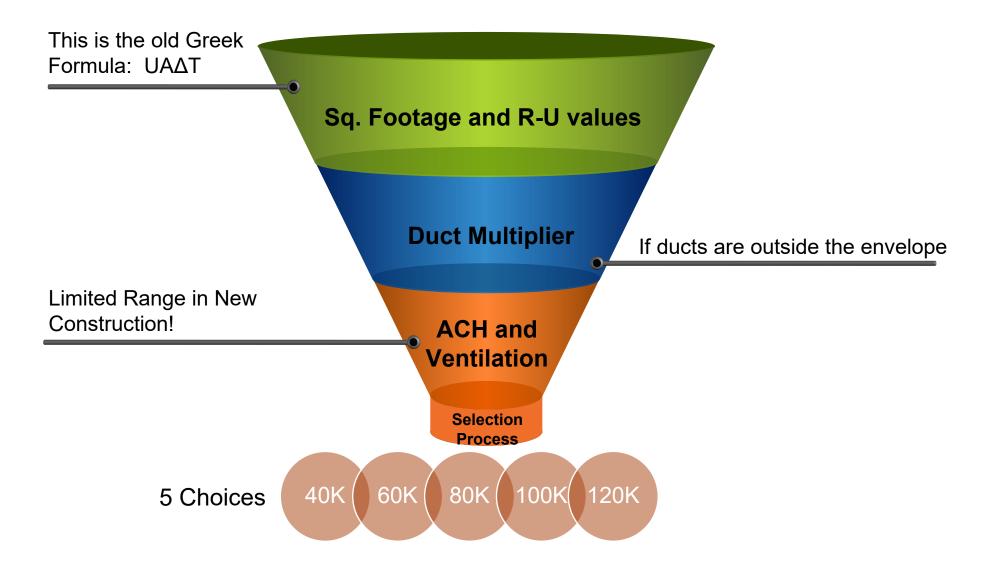
Performance Data @ ARI Standard Conditions—Cooling: RANL- JEZ

Capacity Correction for Altitude: Generic

2,000 Ft.	4,000 Ft.	6,000 Ft.	8,000 Ft.	10,000 Ft.
.98	.97	.95	.92	.90

Make sure your manual J software is set to the correct location (corrects for altitude)

Manual S Appendix 6


The Sweat The Details Stuff

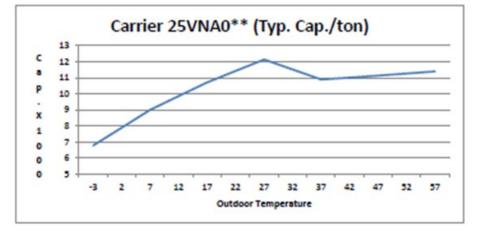
- 1. Insulation Levels, (none, some, fair amount a lot!)
- 2. House Tightness : usually between .35 ACH an .8
- 3. Windows: Solar Heat Gain Coefficient is critical! Orientation
- 4. Duct Multiplier: Between 0% and 30%. If it's outside the envelope
- 5. House component square footages

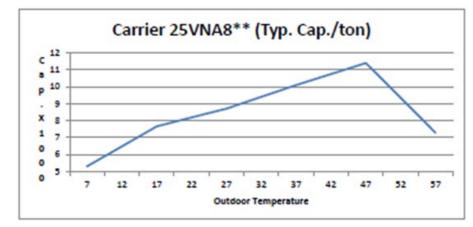
EQUIPMENT SIZING - HEATING

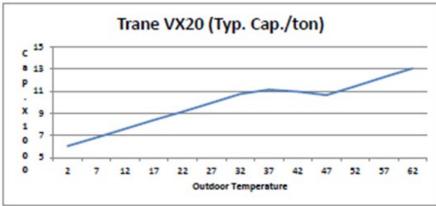
Manual J Heating Load Inputs

Gas Furnace Sizing: It's Easy

If heat loss of house was 45,000 BTU/hr. what furnace would be the right size?


Ratings & Physical / Electrical Data


Model	Input High/Low	Output High/Low	Total Unit	AFUE
	MBH	MBH	Amps	%
TM9V040A10MP11	40/26	38/25	9	96
TM9V060B12MP11	60/39	58/37	9	96
TM9V080B12MP11	80/52	77/50	9	96
TM9V080C16MP11	80/52	77/50	12	96
TM9V100C16MP11	100/65	96/62	12	96
TM9V100C20MP11	100/65	96/62	14	96
TM9V120D20MP11	120/78	115/75	14	96


HEAT PUMP SIZING FOR HEATING WITH GAS BACKUP

Know Your Capacity Tables

Definitions: Capacity Balance Point

The lowest outdoor temperature at which the output of the heat pump can heat the house.

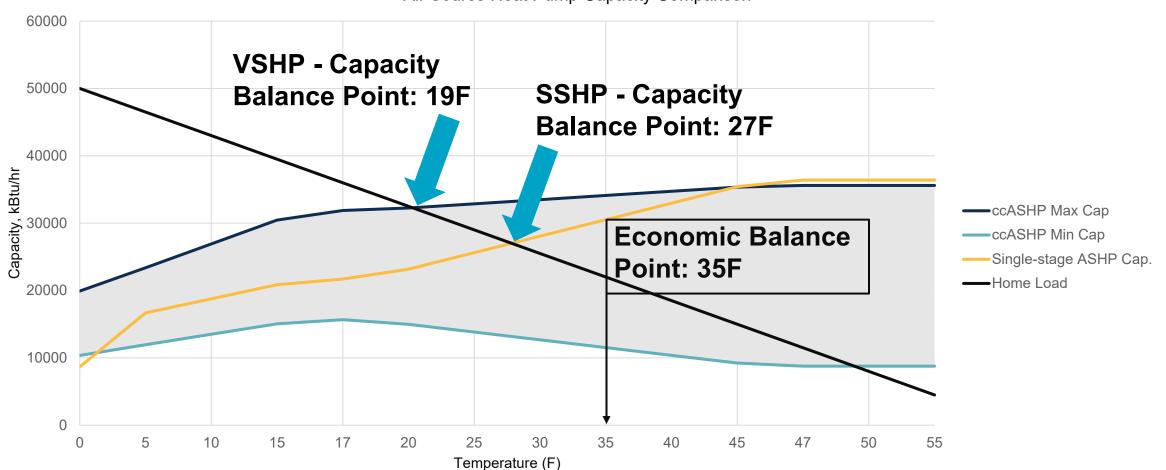
Below this temperature gas backup is needed to meet the heating load.

Energy costs differ by time of day

Time of Use (TOU) rates now in effect

TOU	Times	Summer rates	Winter rates
On-peak	3 - 7 pm	\$0.28/kWh	\$0.17/kWh
Mid-peak	1 - 3 pm	\$0.19/kWh	\$0.14/kWh
Off-peak	7 - 1 pm	\$0.10/kWh	\$0.10/kWh

Standard rate alternative: \$0.13/kWh summer, \$0.12/kWh winter

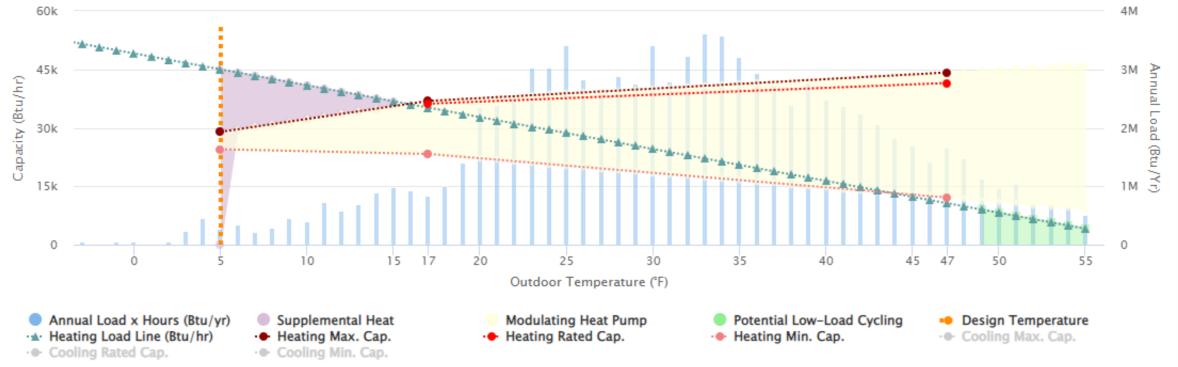

Operating Costs – Xcel Energy CO rates

or Heat Pump with Varying Switchover		and AC		Compar- ison		Heat Pump Heating Hours	AC or ASHP Size in Tons	Carbon Emissions (in Tons)	Over Baseline	% Carbon Reduction
	~14 SEER AC, 80% AFUE	Ś	910				3 ton	5.7	(Tons)	
Baseline	~17 SEER AC, 80% AFUE		870	\$	(40)		3 ton	5.7	0.0	0%
	45° switchover	\$	880	\$	(30)	44%	3 ton	5.1	0.6	11%
2-Stage Dual Fuel	35° switchover	\$	940	\$	30	69%	3 ton	3.8	1.8	32%
	25° switchover	\$	1,010	\$	100	87%	3 ton	2.5	3.2	56%
Variable Canadity (VC)	35° switchover	\$	890	\$	(20)	69%	3 ton	3.8	1.9	33%
Variable Capacity (VC)	25° switchover	\$	960	\$	50	87%	3 ton	2.6	3.1	54%
Heat Pump, Dual Fuel	5° switchover	\$	1,050	\$	140	99%	6 ton*	1.2	4.5	78%
Cold Climate VC Heat	25° switchover	\$	910	\$	-	87%	3 ton	2.5	3.3	57%
Pump, Dual Fuel	5° degree switchover	\$	1,000	\$	90	99%	4 ton	1.2	4.5	79%
Cold Climate VC Heat			1 020	Ś	120	0.0%		0.99	4.7	020/
Pump, Elec. Backup	5° w E backup	Ş	1,030	Ş	120	99%	4 ton	0.99	4.7	83%
*Not a realistic option. A ccVCH	IP is recommended									

Economic Balance Point (switchover temperature)

- The lowest temperature at which it is cheaper to heat with the HP compared to the gas furnace
- Use economic considerations to determine balance point, when saving money is their priority
- Based on modeling this is around ~35°F for a typical Denver home

Comparing Capacity, Heating Load, and Economic Balance Point



Air Source Heat Pump Capacity Comparison

NEEP Cold-Climate ASHP Product List - ashp.neep.org

- Includes capacity data from manufacturers
- New "advanced data" section
 - HP capacity graph
 - Enter location and design heating load

System Capacity, Heating Load, and Weather Data Graph

45

Setting Switchover Temperature

Ducted dual fuel systems have simple integrated controls

- Use proprietary thermostat when available
- Switchover temperature is controlled through the thermostat
 - Thermostat uses outdoor thermistor or Wi-Fi weather station
- Dual-fuel systems may have capacity failsafe built into controls
 - i.e. if the HP can't meet the load the gas furnace will come on

