MORE DUCTED APPLICATIONS!

Propane and Electric Furnaces All-Electric

ASHP Market Potential

Furnace and AC Homes

- 81% of Xcel's residential customers have furnaces and/or air-conditioners
- 1,300,000 customers are a great application for ducted ccASHPs
 - 40,000 50,000 customers annually

Electrically Heated Homes

- 6% of Xcel's residential customers heat with electricity
- 96,000 customers can save over 55% from a heat pump install

Boiler Heated Homes

- 9% of Xcel's residential customer heat with boilers
- 144,000 customers could use ductless mini-splits for cooling and heating

Electric Heat and Propane Field Research

Percentage Reductions for ccASHPs				
	Site energy	Source energy	Homeowner cost	Emissions
Dual-fuel ASHP vs. propane furnace	40%	10%	30%	5%
All-electric ducted & ductless HP vs. electric resistance	55%	55%	55%	55%

Application Considerations

Large energy savings - 30% - 55%!

Select a cold-climate ASHP

Displace as much heat as possible – size to ~5F

Simple, integrated controls

- Select switchover for propane
- Supplemental electric aux. for electric

DUCTED ALL-ELECTRIC ASHPS

Customer Scenario – Interested in all Electric

Customer Type

- Carbon reduction
- Removing gas
- EV owner
- Rooftop solar
- Interested in new tech
- New construction

© 2021 Xcel Energy 6

Application Considerations

Building envelope and heating load

- Good application for new construction
- Existing home should prioritize insulation/weatherization

Consider climate

- Feasible in Denver area
- Colder regions will use more electric resistance auxiliary

Product Selection and System Design

- ccASHP application
- Need low temp capacity
- Backup furnace replaced with electric resistance auxiliary heater
- Size to meet load at 5F limit aux. heat

Capacity – 4 ton ccASHP – Weatherized Home

Customer Costs

- Comparable in Denver climate
 - Higher cost in colder areas
 - Weatherization will lower costs
- Educate customer on costs

Heat Pump or AC	Annual Heating and Cooling Costs	Cost Compari son	Heat Pump Heating Hours
Baseline ~14 SEER	\$910	-	-
ccASHP sized @5F w/ electric aux.	\$1,030	\$120	100%

Emissions Savings

Heat Pump or AC	Carbon Emissions (tons)	Emissions Savings (tons)	% Carbon Reduction
Baseline ~14 SEER	5.7	-	-
ccASHP sized @5F w/ electric aux.	2.5	4.7	83%

Carbon Reduction

- Average Car = 4.64 tons
 - Assumes 11,520 miles per year

<u>Customer message -</u>

 Offset the emissions from a car with a ccVSHP!

© 2021 Xcel Energy

Customer Benefits

- All-electric
 - No gas needed = no monthly fee!
- Highest emissions reduction
- Rooftop solar = lower costs
- Continuous HP operation
 - ER aux heat supplements when needed
 - Reduced temperature swings = increased comfort
 - Increased circulation = improved IAQ

DUCTED ALL-ELECTRIC BEST PRACTICES

Maximizing the Compressor

- Size correctly know your capacity balance point
 - Size to 5F
- A true cold climate heat pump
- Size the auxiliary heat for the difference between the capacity at design temperature and the load at design conditions
- Auxiliary heat controls are really important for energy savings

Design & Sizing for Ducted Systems

Trade-offs between HP size and fraction of heating load meet

Percent heating load met by ASHP:

4 ton ~ 86%

3 ton ~ 77%

2 ton ~ 60%

Design & Sizing for Ducted Systems

- Size the aux for the delta between the capacity at design temperature and the load of the house.
- Capacity at -3F is 15,000 BTUs/hr. for the 3-ton unit.
- Heat loss is 26,000 BTUs hr. Delta is 11,000 BTUs hr.
- Don't size the aux heat for 26,000 Btus.

Minimizing the Use of Auxiliary Heat

To minimize the use of aux. heat, these three steps must be taken:

- 1. Size the compressor large enough to provide all the heat needed if the outdoor temp is above 5° F (hint: 5° F is the "capacity balance point").
- 2. Controls with outdoor thermostat (lockout aux. heat above 35°F). This prevents unnecessary aux. heat use (emergency heat will still work if wired correctly).
- 3. Ideally stage aux. heat 5 kW at a time.

Auxiliary Heat Lockout

- Controlled through thermostat or outdoor unit control board on some brands
- Auxiliary (strip) heat lockout set at 35°F or below
- Must use outdoor thermistor or Wi-Fi weather station

Compressor Lockout

- Controlled through thermostat
- Can set it to not lock out compressor at all

